LA CRISIS NACIONAL Y LA INVESTIGACIÓN CIENTÍFICA

La crisis por la que actualmente atraviesa nuestro país no tiene visos de solución a corto plazo y ha creado grandes problemas para el reducido, pero importante número de investigadores científicos con que cuenta nuestro país. La disminución de los presupuestos, la drástica reducción de los programas de becas, la prolongada imposibilidad para adquirir divisas y la devaluación del peso, aunadas a nuestra necesidad de equipos y materiales extranjeros así como la imposibilidad de adquirirlos en el tiempo requerido, se han agudizado en forma por demás importante para todos. Esta situación general reviste características especialmente críticas para los grupos que hacen trabajo de investigación experimental como es el caso de la investigación bioquímica.

Algunos grupos han empezado a reunirse para analizar los problemas que enfrentamos y proponer soluciones y se ha manifestado un interés por participar en la solución de éstos en forma conjunta. Hasta ahora los investigadores se habían limitado a esperar que el esfuerzo de su Director u otra autoridad resolviera todos los problemas; era raro encontrar quien buscara o acudiera al llamado de sus compañeros para unir esfuerzos, analizar los problemas y encontrar soluciones comunes. Sin embargo, esta crisis dentro de todo el daño que nos está causando, parece haber tenido la virtud de estimular este sentido de grupo, tan urgente en nuestro medio. Parece estar ocurriendo también otro fenómeno interesante: la crisis está estimulando la idea de que las sociedades científicas pueden ser el ámbito adecuado para la búsqueda de soluciones.

Es esencialmente en el seno de nuestras sociedades en donde podemos buscar el mayor estrechamiento de nuestras relaciones y conocer mejor las posibilidades que existen para conseguir ayuda. Es raro encontrar a un compañero investigador que no esté dispuesto a compartir tal o cual reactivo que nos urge para no parar un trabajo de investigación. En la ciudad de México, al menos, existe también una cantidad suficiente de equipo para resolver los problemas que esta crisis nos plantea, esto es particularmente cierto en cuanto a piezas de equipo especializado, cuyas posibilidades de adquisición estamos viendo fuertemente men-guadas en el futuro. Es necesario realizar acciones que tiendan a promover ante el gran público y las autoridades gubernamentales nuestra imagen y a reafirmar la importancia y el respeto que la ciencia en general debiera tener en el ámbito nacional. Es importante también que de esta mayor interrelación de los miembros de las sociedades surjan programas de posgrado mejor organizados y más sólidos para ofrecer a nuestros estudiantes las opciones que en ocasiones buscan en el extranjero, pero que con frecuencia podemos ofrecerles en nuestras instituciones. Lo ideal sería que todos nos percatáramos de los grandes beneficios que nos puede reportar con sólo hacer efectivo los objetivos que dieron origen a la fundación de nuestras sociedades científicas.

En el ámbito externo, podemos hacer planteamientos de mayor solidez y firmeza ante las instituciones gubernamentales adecuadas para solicitar soluciones, que al menos en apariencia, se antojan perfectamente factibles. Por ejemplo, es posible una mejor distribución de los recursos nacionales para manejar los programas de becas. El CONACyT está revisando la justificación de algunas becas asignadas al extranjero. La suspensión de apoyos a estudiantes que no justifican su estancia en el extranjero puede lograr una redistribución de los fondos que permita, con una selección más
COMITE EDITORIAL
ALFONSO CARABEZ TREJO
Centro de Investigaciones en Fisiología Celular
Universidad Nacional Autónoma de México

GUILLERMO CARVAJAL
Escuela Nacional de Ciencias Biológicas
Instituto Politécnico Nacional

ALBERTO HAMABATA
Centro de Investigación y Estudios Avanzados
Instituto Politécnico Nacional

JOSE ANTONIO HOLGUIN HUESO
Instituto Nacional de Cardiología
“Dr. Ignacio Chávez”
México, D. F.

JESUS MANUEL LEON CAZARES
Centro de Investigaciones en Fisiología Celular
Universidad Nacional Autónoma de México

ENRIQUE PIÑA GARZA
Facultad de Medicina
Universidad Nacional Autónoma de México

SERGIO SANCHEZ ESQUIVEL
Instituto de Investigaciones Biomédicas
Universidad Nacional Autónoma de México

SAUL VILLA TREVIÑO
Centro de Investigación y Estudios Avanzados
Instituto Politécnico Nacional

COORDINADOR EDITORIAL
YOLANDA SALDAÑA DE DELGADILLO
Facultad de Medicina
Universidad Nacional Autónoma de México

CORRESPONSABLES

ÍNDICE
BEB 83 Vol. II, Núm. 1 marzo 1983

EDITORIAL
La Crisis Nacional y la Investigación Científica. Antonio Peña Díaz 1

ARTÍCULOS
Bioquímica de los Antibióticos. Rosa del Carmen Mateos, Ruth Schwartz y Sergio Sánchez 3
Linfocitos T Citotóxicos. Yvonne Rosenstein 8
Poliaminas: Moléculas en busca de una función. Irma Bernal Lugo 13

OTRAS COMUNICACIONES
El Rincón del Taller. X Taller de Actualización Bioquímica. Yolanda Saldana de Delgadillo 19
Primer Aniversario del B.E.B. José Antonio Holguín Hueso 20
Solidaridad ante la Crisis. Vicente Díaz Sánchez .. 20
Extracción de Proteínas de Hojas. Luis Rogelio Hernández Montenegro 21
Cursos de Posgrado ... 22

En la lepra tuberculoides y en la lepra lepromatosa, hay predominio de Linfocitos T “Cooperadores” y “Supresores” respectivamente ... 24

Hipoglucemia asociada con anticuerpos para el receptor de la insulina 24
Anatomía de un gene del cáncer humano .. 25

La neuropatía diabética y su posible relación con la glicosilación no-enzimática de la tubulina 25

INDICES DE REVISTAS .. 26
Instrucciones para los colaboradores del Boletín de Educación Bioquímica 32

cuidadosa, asignar becas nacionales y evitar así el colapso de nuestros programas de posgrado. Es posible también solicitar la continuidad de los programas de apoyo a proyectos de investigación científica por parte de diferentes instituciones gubernamentales o descentralizadas, principalmente los programas indicativos del CONACyT. La cifra que este país dedica a la investigación científica no es tan grande como para justificar que se suspenda este tipo de apoyos como parte del programa de austeridad. Puede solicitarse también que se mantengan los programas de apoyo de intercambio internacional, desde la adquisición de las revistas que requerimos para mantenernos informados, hasta el intercambio con grupos de trabajo extranjeros. Podemos también pedir un cambio de actitud de las autoridades gubernamentales que se traduzca en el respeto que la comunidad científica mexicana merece y que se traduzca, eventualmente, en acciones concretas que tiendan a mejorar las condiciones para realizar un trabajo que es en sí ya complicado. Podríamos buscar que dentro de los reducidos presupuestos se den las facilidades necesarias para adquirir divisas en las mejores condiciones y que los pocos equipos y materiales que podamos adquirir, logren ingresar al país sin tantas dificultades en la obtención de permisos de importación, franquicias y otros trámites aduanales. En suma, debemos buscar el reconocimiento formal y efectivo de la importancia de nuestra actividad, especialmente de nuestros gobernantes.

Es indudable que mediante la unión de esfuerzos de la comunidad, podremos apoyar la tarea de nuestras instituciones y lograr que se acepte el lugar prioritario que, especialmente en esta época de crisis, debe asignarse a la ciencia. No existe registro en la historia de la humanidad, de pueblo alguno que pudiera lograr un mínimo de preponderancia y dignidad sin el concurso de la ciencia.

Dr. Antonio Peña Díaz
Director del Centro de Investigaciones en Fisiología Celular.
U.N.A.M.

BIOQUÍMICA DE LOS ANTIBIÓTICOS

Rosa del Carmen Mateos, Ruth Schwarts y Sergio Sánchez. Departamento de Biotecnología del Instituto de Investigaciones Biomédicas de la U.N.A.M. México, D. F. 04510, México.

INTRODUCCION

Los antibióticos representan a una variedad de metabolitos secundarios de complejidad química variable, que son sintetizados por algunos microorganismos en la fase tardía de su crecimiento (1). En contraste con los metabolitos primarios, que son esencialmente los mismos en todos los sistemas biológicos (aminoácidos, bases púricas y pirimidícas, etc.), los secundarios son característica de unas cuantas especies microbianas. Al igual que para los antibióticos, el término metabolito secundario involucra también a toxinas, pigmentos y alcaloides.

INTERES PRACTICO

La importancia práctica de los antibióticos deriva de la gran cantidad de aplicaciones que se les ha dado (tabla I). Destaca especialmente su uso tanto en medicina humana como veterinaria para el control de enfermedades infecciosas. Recientemente también se les ha involucrado como efectores de diversas actividades fisiológicas en los animales (tabla II), representando por ello un tema de estudio de gran importancia en varios centros de investigación clínica y microbiológica. Desde el punto de vista agrícola su importancia radica no sólo en su efectividad contra diversos patógenos de plantas como es el caso de Kasugamicina contra Piricularia orizaec (parásito del arroz), sino que además pueden controlar la fecundidad y provocar la muerte de diversos insectos. Entre estos antibióticos destacan: antimicina A (ácidos pulgón de chicharo, mosca casera, etc.), cicloheximidida (ácidos y pulgón de durazno) y estreptovitacina A (araña manchada, pulgón de manzana).
TABLA I. Clasificación Utilitaria de los Metabolitos Secundarios

Medicina Humana
Antibióticos de aplicación terapéutica en humanos.
Sustancias que afectan actividades fisiológicas.

Agricultura
Sustancias que actúan contra patógenos de plantas.
Sustancias que actúan como insecticidas.
Sustancias que regulan el crecimiento en animales.

Medicina Veterinaria
Antibióticos de aplicación terapéutica en animales.
Sustancias que promueven el crecimiento en animales.

Investigación
Sustancias útiles para la elucidación de procesos biológicos a nivel molecular.

En la investigación, los antibióticos han jugado un papel fundamental por su especificidad para interrumpir ciertos procesos biológicos. Así, la actinomicina que poca oportunidad ha tenido en la terapéutica médica debido a su elevada toxicidad, ha encontrado sin embargo, un amplio campo de acción en diversos aspectos de la investigación en biología molecular (2).

Anualmente se producen alrededor de 15,000 toneladas de antibióticos en aproximadamente 100 diferentes compañías farmacéuticas en el mundo, lo cual representa ingresos al año por más de 10^{10} U.S. dólares (3). Estas cifras implican la explotación de solamente unos 100 antibióticos diferentes de los 3,000 adicionales que han sido descritos y que por diversos problemas no son utilizados.

Muchos antibióticos son el resultado de una conversión química o biológica de los productos naturales. Tal es el caso de la ampicilina que proviene de la penicilina G y de la clindamicina que a su vez proviene de la leucomicina (2). El interés práctico de los derivados de antibióticos naturales estriba

TABLA II. Metabolitos Secundarios que Afectan Actividades Fisiológicas en los Animales

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Efecto específico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pepstatin</td>
<td>Inhibidor de la pepsina</td>
</tr>
<tr>
<td>Zeranol</td>
<td>Estrogénico anabólico</td>
</tr>
<tr>
<td>Leupeptin</td>
<td>Inhibidor de la trombocinasa</td>
</tr>
<tr>
<td>Muscarina</td>
<td>Parásimpaticomimético</td>
</tr>
<tr>
<td>Ac. fusárico</td>
<td>Hipotensivo, inhibe dopamina-hidroxilasa</td>
</tr>
<tr>
<td>Colisán</td>
<td>Antiespasmódico</td>
</tr>
<tr>
<td>Psilocicina</td>
<td>Alucinógeno</td>
</tr>
<tr>
<td>Nigrifactin</td>
<td>Antihistamínico</td>
</tr>
<tr>
<td>Ac. micofenólico</td>
<td>Inmunosupresor</td>
</tr>
<tr>
<td>Ergosterol</td>
<td>Pro-vitamina D</td>
</tr>
<tr>
<td>Nystatina</td>
<td>Cardiotónico y anticolesleroléxico</td>
</tr>
<tr>
<td>Streptozotocina</td>
<td>Hiperglicémico</td>
</tr>
<tr>
<td>Griseofulvina</td>
<td>Antiinflamatorio</td>
</tr>
<tr>
<td>Monorden</td>
<td>Sedante</td>
</tr>
</tbody>
</table>
esencialmente en su mayor estabilidad y menores efectos colaterales (tabla III) de aquí que esta área se ha desarrollado de manera importante en los últimos años.

La producción de antibióticos por la industria farmacéutica constituye hoy en día una empresa de gran importancia en el desarrollo económico de México (4). Sin embargo, muchos de ellos aún deben ser importados en grandes volúmenes. Casos representativos de ello son la polimixina, la cual es requerida en México por 16 diferentes laboratorios para la fabricación de 32 productos farmacéuticos (5). Asimismo, con la bacitracina se fabrican 8 diferentes productos por 5 laboratorios distintos. La penicilina G se utiliza en 7 laboratorios para la elaboración de 24 productos. Finalmente la cefalosporina y sus derivados, se utilizan para la elaboración de 20 productos farmacéuticos (5).

BIOSÍNTESIS DE LOS ANTIBIÓTICOS

La formación de antibióticos es característica de unas cuantas especies microbianas y en ocasiones de algunas cepas de una sola especie. Generalmente son formados como familias de compuestos estructuralmente relacionados. Así por ejemplo, ha sido reportado que una sola cepa de Micromonaspora produce 48 diferentes antibióticos del tipo de los aminociclitoles (2).

Los antibióticos son generalmente formados durante la fase tardía del crecimiento microbiano (fig. 1). Durante esta fase (idiófase), la velocidad específica de crecimiento disminuye y los antibióticos se sintetizan (6), fenómeno probablemente seleccionado como respuesta a presiones selectivas. De hecho se ha postulado que uno de los posibles papeles de los antibióticos en la naturaleza es el inhibir o destruir a otros microorganismos (1), de modo que su formación al final de la fase de crecimiento, le previene de ser blanco de su propio producto. Un posible factor que controla la iniciación de la biosíntesis de antibióticos es probablemente la deficiencia de uno o más componentes nutricionales que limitan el crecimiento de los microorganismos productores. La depleción de estos compuestos tiene el crecimiento e inicia la biosíntesis de metabolitos secundarios por mecanismos que apenas empiezan a conocerse (7).

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Derivado</th>
<th>Aumenta la actividad contra bacterias gram-negativas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicilina</td>
<td>Ampicilina</td>
<td>Aumenta la actividad contra gram-negativos, en especial Pseudomonas.</td>
</tr>
<tr>
<td>Penicilina</td>
<td>Carbenicilina</td>
<td>Mayor estabilidad química y mayores niveles en sangre.</td>
</tr>
<tr>
<td>Clorotetraciclina</td>
<td>Tetraciclinia</td>
<td>Mayores niveles en sangre y menores efectos colaterales.</td>
</tr>
<tr>
<td>Lincomicina</td>
<td>Clindamicina</td>
<td>Mejor absorción oral.</td>
</tr>
<tr>
<td>Cefalogicina</td>
<td>Cefalexina</td>
<td>Mejor absorción oral, mayor actividad contra bacterias gram-positivas y virus.</td>
</tr>
<tr>
<td>Rifamicina</td>
<td>Rifampina</td>
<td></td>
</tr>
</tbody>
</table>

Figura 1. Cinética de crecimiento (○) y producción de penicilina (●) por el hongo Penicillium chrysogenum.
Los antibióticos pueden ser sintetizados a partir de productos finales o de intermediarios del metabolismo primitivo (fig. 2). Así por ejemplo el cloramfenicol es formado por Streptomyces sp. 3022a a partir de corismato, intermediario común de los aminoácidos aromáticos. Por otro lado, la lincomicina es sintetizada por Streptomyces lincolnensis var. lincolnensis a partir del aminoácido tirosina.

Las reacciones involucradas en la formación de antibióticos son similares a las que presenta el metabolismo general. Así, dependiendo del ejemplo específico, generalmente son necesarios de uno a varios pasos metabólicos a partir del precursor, para concluir la síntesis del antibiótico. Para ello, los microorganismos productores poseen vías biosintéticas específicas en las cuales participan enzimas que no son utilizadas en la fase de crecimiento (6).

Los genes que contienen la información para la síntesis de los antibióticos pueden ser cromosómicos, o bien estar contenidos en el ácido desoxirribonucleico extracromosómico. Así por ejemplo, los genes estructurales para la síntesis de metilencicina A, han sido localizados en un plásmido. Sin embargo, lo más frecuente es su posición cromosómica.

Se ha observado que los microorganismos productores de antibióticos presentan diversos problemas para regular su metabolismo primitivo (1). Este fenómeno trae como consecuencia la sobrepoblación y acumulación de intermediarios y productos finales del metabolismo (8). Bajo estas circunstancias, se ha reportado que las elevadas posas intracelulares, pueden inducir vías subsidiarias que permiten la canalización de los metabolitos acumulados y de esta forma, se evitan efectos negativos sobre el microorganismo productor. La canalización o drenaje de metabolitos frecuentemente cristaliza en la formación de antibióticos y de otros metabolitos secundarios. Así por ejemplo, la elevada concentración de ácido glutámico intracelular al final de la fase logárfitmica de crecimiento (trolofase) de Peni-

![Diagrama de la Biosíntesis de algunos antibióticos a partir de metabolitos primarios.](image)

Figura 2. Diagrama de la Biosíntesis de algunos antibióticos a partir de metabolitos primarios.
cillium chrysogenum, permite la inducción de la primera enzima de la vía de biosíntesis de penicilina. Este fenómeno provoca la síntesis del antibiótico y permite la canalización del aminoácido a través de formar cisteína, α-aminoácido pato y valina, precursores directos de la penicilina (7).

REGULACION DE LA SINTESIS DE ANTIBIÓTICOS

Una característica generalmente observada al estudiar la producción de antibióticos, es su propiedad de ser formados en la fase tardía del crecimiento microbiano. Este comportamiento, asegura la existencia de mecanismos regulatorios que evitan la expresión de los genes específicos durante la fase de crecimiento activo. Tal control puede ocurrir por interferencia con la transcripción de la información genética del ácido desoxirribonucleico al ácido ribonucleo mensajero (RNA) o por interferencia con la traducción de la información del RNA que evita la formación de las enzimas involucradas en la síntesis del antibiótico.

Varios mecanismos parecen estar implicados en el control de la iniciación de la síntesis de antibióticos. Dentro de ellos la inducción y la represión parecen jugar un papel fundamental (tabla IV).

La glucosa, que por lo general es una excelente fuente de carbono para el crecimiento bacteriano, interfiere con la biosíntesis de muchos antibióticos (Tabla IV). Se ha observado que ciertos polisacáridos y oligosacáridos son frecuentemente mejores fuentes de carbono para la producción de antibióticos. En un medio que contiene glucosa además de una fuente de carbono de más lenta utilización, la glucosa se utiliza preferentemente para el crecimiento microbiano y una vez consumida se emplea la segunda fuente y el antibiótico empieza a producirse (9). Este fenómeno, conocido con el nombre de represión catabólica, es generalmente ejercido por la glucosa. Sin embargo, en la formación de algunos antibióticos como la novobiocina por Streptomyces nivosus, el efecto es inducido por el citrato, quien a su vez se utiliza mejor que la glucosa (6).

No se sabe con seguridad si el 3’, 5’-monofosfato cíclico de adenosina (AMP cíclico) está involucrado en la regulación catabólica por carbono. Así por ejemplo, se ha reportado que este compuesto no revierte el efecto de glucosa sobre la síntesis de penicilina y cefalosporina, sin embargo, si lo hace en la síntesis de prodigiosina y kanamicina (6). Actualmente, existe controversia sobre la interpretación de estos datos.

En unos cuantos ejemplos se ha reportado regulación por producto final (tabla IV). El cloramfenicol, retorprime la síntesis de ariamina sintetasa, primera enzima de su vía de biosíntesis. Por otra parte la puromicina inhibe la última enzima de su vía biosintética (O-metiltransferasa).

El conocimiento exacto de los mecanismos reguladores que controlan la formación de los antibióticos posee, además de su importancia académica, un interés práctico, ya que representan la base para el desarrollo racional de programas de mejoramiento genético de la producción. En el pasado se han realizado muchos esfuerzos empíricos para la obtención de microorganismos sobreproducientes de antibióticos. Sin embargo, en ausencia del conocimiento exacto de los procesos reguladores, la inversión de tiempo y de materiales ha sido grande. La mayoría de las mutantes obtenidas por estos procedimientos son probablemente mutantes reguladores de que podrían haber sido aisladas fácilmente mediante procesos de selección orientada.

El conocimiento de la bioquímica genética en la producción de antibióticos ha avanzado lentamente, comparado con el progreso de la biología molecular básica y de la genética. Sin embargo, el desarrollo reciente de estas ciencias, junto con la bioquímica fundamental, ha proporcionado las bases para per-

<table>
<thead>
<tr>
<th>Inducción</th>
<th>Retrorregulación</th>
<th>Represión catabólica</th>
<th>Regulación por carga energética</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloramfenicol</td>
<td>Cloramfenicol</td>
<td>Neomicina</td>
<td>Clorotetraciclina</td>
</tr>
<tr>
<td>Penicilina</td>
<td>Penicilina</td>
<td>Penicilina</td>
<td></td>
</tr>
<tr>
<td>Griseofulvina</td>
<td>Ristomicina</td>
<td>Estreptomicina</td>
<td></td>
</tr>
<tr>
<td>Tetraciclina</td>
<td>Estafilocomicina</td>
<td>Puromicina</td>
<td></td>
</tr>
<tr>
<td>Cicloheximida</td>
<td>Cándidicina</td>
<td>Novobiocina</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cicloheximida</td>
<td>Actinomicina</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aurodox</td>
<td>Mitomicina</td>
<td></td>
</tr>
</tbody>
</table>

TABLA IV. Mecanismos Regulatorios Observados en la Producción de Antibióticos
mitir un progreso acelerado en el estudio de los antibióticos. De interés especial será la aplicación de la ingeniería genética en la producción de estos metabolitos que permita un avance sustancial en el conocimiento de la biología molecular de su producción, a la vez que permita sobrehacerlos.

BIBLIOGRAFÍA

LINFOCITOS T CITOTOXICOS

Yvonne Rosenstein.

La respuesta inmune es producto de la actividad de distintas células, la mayoría de las cuales son linfocitos. Los linfocitos se dividen en dos grandes categorías: linfocitos B y linfocitos T. Ambos presentan en su superficie receptores por medio de los que reconocen e interactúan con las moléculas antigénicas y realizan las diferentes funciones efectoras de la inmunidad.

Los linfocitos B son los precursores de las células secretoras de inmunoglobulinas o anticuerpos: se originan a partir de las células de la médula ósea, a través de un proceso de maduración independiente de la presencia antigénica: presentan inmunoglobulinas de membrana que actúan como receptores específicos.

Los linfocitos T derivan también de las células progenitoras de la médula ósea y maduran en un órgano linfóide primario, el timo. Los linfocitos T presentan en su superficie diferentes aloantígenos que han permitido discernir diferentes subclases dentro de esta población. En ratones, la información más relevante se ha obtenido al estudiar la distribución de los antígenos codificados por el sistema Ly. Este sistema se compone de tres loci: Ly1, Ly2 y Ly3 donde Ly2 y Ly3 son muy cercanos y cada uno de los loci tiene dos formas alélicas. Los linfocitos inmaduros que se encuentran en la corteza del timo presentan el antígeno TL, un antígeno de leucemia tímica y expresan en su superficie Ly1 y Ly2, 3; en cambio los linfocitos T maduros que se encuentran en los tejidos linfoides o en la circulación son Ly1+, Ly2, 3− o bien Ly1−, Ly2, 3+. Asimismo, se ha demostrado que ciertas funciones de los linfocitos T se asocian con un fenotipo particular de antígenos de superficie y que el fenotipo de una célula T madura es estable, es decir que cada célula pertenece a una línea particular de diferenciación y que no dará lugar a otro tipo de célula.

Los linfocitos T participan en muchas reacciones inmunológicas como son la regulación del grado de respuesta inmune, el rechazo de injertos y de tumores, reacciones de hiperesensibilidad retardada, activación e incremento del poder bactericida de los macrofagos, actividad citotóxica (lisis) de células ajenas o infectadas por virus, respuestas proliferativas producidas por la interacción con un antígeno. Algunas funciones efectuadas por los linfocitos T se encuentran asociadas con algunos fenotipos (1):

- Linfocitos T ayudadores (Helper): Ly1+, Ly2, 3−
- Linfocitos T supresores: Ly1−, Ly2, 3+
- Linfocitos T citotóxicos: Ly1−, Ly2, 3+

La función regulatora de los linfocitos T se puede
expresar de dos maneras: positiva o negativa. Las células T ayudadoras son necesarias para presentar ciertos antígenos a otros linfocitos encargados de la fase efectora de la respuesta. Las células T supresoras, como lo indica su nombre, son capaces de suprimir una respuesta inmune dada. Las células T citotóxicas, o asesinas, tienen la capacidad de matar a otras células.

LAS CELULAS T CITOTOXICAS INTERVIenen EN EL RECHAZO DE INYERTOS Y EN LA INMUNIDAD ANTIvIRAL

A partir del momento en que la inmunología dejó de interesarse exclusivamente por las enfermedades infecciosas y que empezó a estudiar los fenómenos de rechazo de injerto de órganos y de células tumorales —esto sucedió sólo en la segunda mitad de este siglo— la importancia de las células T en los procesos inmunológicos fue cobrando cada vez mayor peso.

El papel de las células T citotóxicas se demostró por primera vez en experimentos de transplantes. Gracias a la generación por Gorer y Snell, de cepas de ratones consangüíneas, genéticamente bien definidas, obtenidas de críos endogámicos seriados fue posible establecer el concepto de antígenos principales de histocompatibilidad, que corresponden en el ratón al sistema H-2 y en el hombre al sistema HLA (ver apartado en la página 12). Cuando un ratón de la cepa X rechaza un injerto de la cepa Y produce, entre otras cosas, células T citotóxicas dirigidas en contra de los antígenos principales de transplante de Y. Este modelo que en sí carece de significación biológica, pues el transplante de órganos no representa una finalidad biológica o evolutiva, permitió determinar las características fundamentales de la inmunidad celular. Cuando los linfocitos de las dos cepas de ratones X y Y se co-cultivan o bien cuando se transfieren los linfocitos de una de las cepas (X) a un animal intacto de la otra cepa (Y), los linfocitos T del animal Y (receptor) matan a los linfocitos de X (donador). Esta reacción tiene tal grado de especificidad que las células T sólo reconocen las especificidades privadas de los antígenos principales de histocompatibilidad —las que son más variables de un individuo a otro— codificadas por los extremos de las regiones K y D del complejo H-2. Los antígenos H-2d y H-2k son ubicuos y se expresan en todas las células de un organismo, definen la "identidad" inmunológica, lo propio (self) de un individuo.

Al principio de la década de los años 70, Dixon y Oldstone (2) demostraron que las células T citotóxicas también intervienen en la inmunidad antiviral. Poco a poco, las características de los linfocitos T citotóxicos antivirales se fueron definiendo, y son las siguientes (3, 4):

1) Son células que se producen en un órgano linfoides tal como el bazo, tan solo 3 días después de la inoculación del virus y que desaparecen poco después de la eliminación del agente patógeno.
2) Matan a las células infectadas por contacto directo, sin la intervención de factores solubles o de complemento.
3) No presentan inmunoglobulinas de superficie, pero sí el antígeno \(\theta \) característico de las células T.
4) Son específicas para un virus dado, o sea que las células T sensibilizadas en contra del virus de la viruela sólo matarán a células infectadas por este virus, pero no a células normales ni a aquellas infectadas por otro virus.
5) Deben tener los mismos antígenos del complejo H-2 que las células blanco y no pueden matar células blanco infectadas por el mismo virus pero que no tengan los mismos antígenos K o D o sea, que además de la especificidad del virus, los linfocitos T citotóxicos también son específicos para los marcadores de lo “propio”.

Este fenómeno fue descrito simultáneamente por Zinkernagel y Doherty (4, 5) tanto para virus como para antígenos de histocompatibilidad modificado con TNP (trinitrofenilo) por Shearer (6), lo que se conoce como el fenómeno de restricción H-2.

UN FENOMENO INESPERADO: LA RESTRICCIÓN H-2

Zinkernagel y Doherty intentaron establecer si había alguna correlación, entre la capacidad que tienen ciertas cepas de ratones de producir linfocitos T citotóxicos dirigidos contra el virus de la encefalitis linfocítica y la sensibilidad de esos animales a la enfermedad (fig. 1). Las células T sensibilizadas son específicas del virus pero también de los antígenos H-2 y los marcadores de lo “propio”, implicados en esta reacción de lisis, son únicamente codificados por las regiones K y D del complejo H-2. Para que una célula infectada sea lizada específicamente basta con que haya identidad en una sola de las cuatro regiones K o D. La presencia de otros antígenos, inclusive los demás antígenos del complejo mayor de histocompatibilidad, no interviene; las células blanco infectadas con el mismo virus, pero provenientes de otra cepa de ratones no son lisadas, a menos que compartan la misma especificidad de antígenos K y D (7).

La noción de restricción H-2 no es exclusiva de los linfocitos T citotóxicos. Para que los linfocitos T ayudadores ("helper") cooperen con las células B o los macrófagos, también es necesario que sus antígenos H-2 sean compatibles aunque en este caso la
compatibilidad se refiere a los antígenos codificados por la región I del complejo H-2.

En realidad los datos proporcionados en la figura 1 podrían ser interpretados de dos maneras distintas: ya que la restricción H-2 se lleva a cabo en la fase efectora en la que el linfocito T citotóxico y la célula blanco están en contacto directo, o bien que la restricción H-2 esté únicamente involucrada en la fase de generación de los linfocitos T citotóxicos.

Para distinguir entre estas dos posibilidades, se inmunizaron ratones F₁ con un antígeno asociado a alguno de los dos tipos de células parentales, probándose luego la actividad citotóxica de las células de bazo del híbrido en contra de células blanco con el mismo H-2 de los progenitores y acoplados con el mismo antígeno que se empleó en un principio (fig. 2). Si la restricción H-2 se lleva a cabo en la fase efectora del linfocito T citotóxico, los linfocitos T citotóxicos del híbrido deberían de matar a cualquier blanco que presente los antígenos H-2 de alguno de los progenitores. En cambio, si la restricción H-2 se lleva a cabo en la fase de activación de la célula precursora del linfocito T citotóxico, los ratones híbridos que comparten los antígenos H-2 con las células parentales que se usaron para inducir la respuesta, no podrán reconocer y matar a las células del otro progenitor. Los resultados experimentales demostraron que esta segunda posibilidad correspondía a la realidad (7).

Los experimentos posteriores, llevados a cabo con quimeras de médula ósea (F₁ → P) demostraron que el huésped, en este caso uno de los progenitores, permite que se desarrolle sólo uno de los juegos de células T autorreactivas. Los linfocitos T citotóxicos de un híbrido F₁ que tienen la capacidad de reconocer los antígenos H-2 de cada uno de los progenitores, pero que se diferencian en el medio ambiente de uno de los progenitores sólo son capa-

¿UN SOLO RECEPTOR O DOS RECEPTORES DISTINTOS?

El fenómeno de restricción H-2 resultó ser un fenómeno general: los receptores de los linfocitos T citotóxicos reconocen a la vez un antígeno extraño los productos del complejo mayor de histocompatibilidad. La pregunta de si los linfocitos T citotóxi-

![Figura 2. Restricción H-2 en la generación de linfocitos T citotóxicos. Solo las células que sirvieron para inmunizar el híbrido F₁ son reconocidas y lisadas por linfocitos T citotóxicos, excluyendo la posibilidad de reconocer al otro haplotipo del propio híbrido.](attachment:figura2.png)
cos tienen un receptor único que reconoce simultáneamente el antígeno H-2 autólogo y el antígeno extraño, viral o tumoral, por ejemplo, o bien si tienen dos receptores distintos surgió rápidamente. La hipótesis del doble reconocimiento supone que los antígenos k y d y el antígeno extraño, se expresan en la superficie de la célula blanco y que la célula T presenta a su vez dos receptores que se expresan de manera clonal. En cambio la hipótesis de un sitio de reconocimiento único supone que se crea un sitio antigénico nuevo, un complejo formado por los antígenos H-2 y los extraños lo “propio alterado”, y que la célula T presenta un solo receptor (fig. 5). Aunque no se tiene una certeza absoluta, parece ser que las células T presentan en su superficie dos receptores, lo que abunda en favor de la teoría del reconocimiento dual (12).

EL MECANISMO DE LÍSIS

El mecanismos por medio del cual los linfocitos T citotóxicos atacan a su blanco ha sido desglosado en tres etapas (12, 13):

1) adhesión:

Cuando un linfocito T citotóxico reconoce a una célula blanco, a través de los antígenos de histocompatibilidad, las dos células se adhieren fuertemente. Tan solo dos minutos son suficientes para ello, siempre y cuando la temperatura sea de 37°C y haya iones de Mg++ en el medio, la presencia de iones de Ca++ no es necesaria. La mayoría de las drogas que inhiben la citolisis, incluyendo la citocasalasina B (que despolimeriza a los microfilamentos), los inhibidores de producción de ATP y los anestésicos locales, bloquean la adhesión de la célula citotóxica a la célula blanco.

2) golpe letal:

La segunda etapa de la lisis, después de la adhesión, ha recibido el nombre de “golpe letal”; en esta fase, el linfocito T citotóxico lesiona irreversiblemente a la célula blanco. El proceso se lleva a cabo en 10 minutos aproximadamente, es también dependiente de la temperatura (37°C), requiere Ca++ pero no Mg++ y es independiente de síntesis protéica. Una vez que el linfocito T citotóxico ha dado el golpe mortal se desprende de la célula blanco que será lisada irremediablemente, y el linfocito se puede dirigir hacia otra célula blanco para atacarla y lisarla.

Aunque el mecanismo de producción de daño celular no se ha demostrado claramente hasta la fecha, se piensa que el punto de ataque de los linfocitos T citotóxicos es la membrana de la célula blanco. La especificidad del mecanismo de lisis sugiere que el ataque de la célula blanco no se lleva a cabo por la secreción de alguna toxina inespecífica, además de que no ha sido posible identificar alguna molécula con actividad de toxina en los sobrenadantes o extractos de linfocitos T citotóxicos. En cambio, la membrana de la célula blanco presenta una mayor permeabilidad a electrolitos. Por otro lado,
Figura 5. Modelos de reconocimiento de las células T. Hay dos modelos posibles en función de la cantidad y de la naturaleza de los antígenos reconocidos y de la cantidad y de la especificidad de los receptores A: la hipótesis del doble reconocimiento supone la presencia de los antígenos propios (k y d) y de los antígenos virales en la membrana de la célula infectada y de los receptores que se expresan de manera clonal, pero ligados en la superficie de la célula T. B: la hipótesis de un receptor único supone que se forma un nuevo determinante antígenico “propio” modificado o un complejo “propio”, antígeno viral y que la célula T tiene un solo receptor.

es posible que esta última tenga únicamente un papel pasivo, ya que se ha demostrado que células fijadas con glutaraldehído pueden ser lisadas.

3) lisis: independiente de la presencia de la célula asesina

Esta tercera y última etapa es la más larga y requiere de una hora o más para llevarse a cabo, es poco dependiente de la temperatura, se realiza tanto a 0°C como a 37°C y no puede ser inhibida por ningún tipo de droga. Aunque no se tienen evidencias claras acerca del mecanismo, se piensa que la célula blanco muere por los cambios de presión osmótica interna, inducidos por las lesiones ocurridas en la membrana celular durante la etapa del golpe letal.

APARTADO

LOS GENES DEL COMPLEJO MAYOR DE HISTOCOMPATIBILIDAD (H-2) DEL RATÓN.

El complejo H-2 se encuentra localizado en el cromosoma 17 e involucra menos del 0.1 por ciento del genoma murino. El sistema H-2 codifica para una variedad de componentes que se expresan en la superficie de las células: los antígenos de histocompatibilidad. Los antígenos codificados por los extremos K y D del complejo H-2 se expresan en cantidades variables en la superficie de todas las células del organismo. En la región I del complejo se encuentran agrupados una serie de genes que controlan la respuesta inmune, o mejor dicho, la capacidad de producir una gran cantidad de anticuerpos específicos. Esta misma región codifica para componentes implicados en la cooperación de linfocitos T y B y para una clase de antígenos, los antígenos IA, que se expresan en linfocitos B, macrófagos y algunas poblaciones de linfocitos T. La región S codifica para el componente C4 del complemento. La región G codifica para un antígeno de superficie que se encuentra en la superficie de los glóbulos rojos.

regiones K I S D Qa Tla
sub-regiones A B J E C

CÓDIGO

Antígenn: aloantígeno presente únicamente en la superficie de los linfocitos T de ratón.
Autorreactividad: capacidad de establecer una respuesta inmune dirigida en contra de los antígenos “propios”.
Células blancas: células en contra de las cuales está dirigida la respuesta inmune conjunto de determinantes genéticos codificados por genes muy cercanos de un mismo cromosoma.
Linfitcito B: linfocito derivado de la médula ósea; responde al estímulo antígenico diferenciándose en célula productora de anticuerpos.
Linfitcito T: linfocito derivado de la médula ósea; las distintas subpoblaciones maduran en el timo y son responsables de la respuesta inmune a antígenos T-dependientes y a antígenos de histocompatibilidad. Las células T no son productoras de anticuerpos, son responsables de las reacciones de inmunidad celular y tienen la capacidad de regular la respuesta inmune.

Linfitcitos T supresores:
Linfitcitos T ayudadores:
Quimera:

clase de células T capaces de suprimir la respuesta inmune dirigida en contra de un antígeno; pueden ser específicos o inespecíficos.
clase de células T específicas que "ayudan" a las células B a producir anticuerpos en contra de los antígenos T dependientes.
individuo constituido por células de distinto origen genético.
Las poliaminas alifáticas, putrescina (put), espermidina (spd) y espermina (spm), son constituyentes normales de las células microbianas, animales y vegetales.

En los últimos años, se ha acumulado suficiente evidencia experimental indicando que las poliaminas juegan un papel muy importante en la biosíntesis, estructura y función de los ácidos nucleicos y que pueden afectar el metabolismo de las macromoléculas, la estructura de organelos y ciertos aspectos del crecimiento, desarrollo y envejecimiento en diferentes sistemas biológicos, incluyendo plantas. Sin embargo, el mecanismo preciso por medio del cual las poliaminas efectúan tan variadas funciones aún no se ha establecido.

BIOSINTESIS DE POLIAMINAS Y SU CONTROL

Todas las células procariotas y eucariotas sintetizan putrescina y espermidina, sin embargo, la síntesis de espermina está confinada casi exclusivamente a células nucleadas eucariotas. En general, las células procariotas tienen una mayor concentración de putrescina que de espermidina, y la espermina no ha sido detectada en éstas. Por otro lado, las células eucariotas generalmente tienen poca putres-
cina, pero presentan altas concentraciones de espermidina y espermina.

La vía principal de biosíntesis de putrescina y espermidina fue establecida por primera vez en microorganismos, más tarde se encontró que era similar en células de animales y plantas.

SINTESIS DE PUTRESCINA

La putrescina, precursor de espermidina y espermina, es sintetizada en todas las células a partir de arginina, a través de una de dos vías metabólicas (fig. 1).

a) Por acción de la arginasa, la arginina puede perder urea formando ornitina, la cual es luego convertida a putrescina por la enzima ornitina descarboxilasa (ODC).

b) En forma alternativa, la arginina puede ser convertida a agmatina por la enzima arginina descarboxilasa (ADC). La agmatina a su vez pierde urea formando la putrescina.

Ambas rutas biosintéticas están presentes normalmente en *E. coli*. En tejidos animales, la descarboxilación de la ornitina es la única vía de síntesis para la putrescina, mientras que en plantas superiores, la descarboxilación de la arginina parece ser la ruta preferida para la formación de esta diamin.

Tanto en los tejidos vegetales como en los animales, ocurre un incremento dramático en la actividad de la arginina descarboxilasa y la ornitina descarboxilasa respectivamente, durante la fase temprana de la respuesta celular a hormonas u otros agentes que estimulan el crecimiento y la división celular, lo cual sugiere un acoplamiento funcional entre la síntesis de poliaminas y algunos de los eventos tempranos relacionados con el crecimiento.

SINTESIS DE ESPERMIDINA Y ESPERMINA

La síntesis de espermidina y espermina está catalizada por la espermidina sintetasa y la espermina sintetasa, ambas enzimas aparentemente no tienen cofactores disociables. En estas dos reacciones, la putrescina y la espermidina, respectivamente, sirven como acceptores de un grupo aminopropilo derivado de S-adenosil-metionina (SAM), vía S-adenosil-metionina descarboxilasa (fig. 2).

Las enzimas que catalizan la biosíntesis de poliaminas son proteínas solubles, las cuales han sido ampliamente estudiadas en las bacterias y en los tejidos animales. Se sugiere que en estos tejidos la velocidad de síntesis de poliaminas está determinada por la enzima ornitina descarboxilasa ya que su producto, la putrescina, es un activador de la SAM-descarboxilasa, la cual a su vez constituye un segundo punto de control en la biosíntesis de poliaminas.

DEGRADACION INTRACELULAR

Los niveles intracelulares de las poliaminas están regulados tanto por procesos anaeróbicos (síntesis), como por procesos catabólicos (degradación). La espermidina y la espermina son catabolizadas por amino oxidasas, las cuales funcionan por diferentes mecanismos: en bacterias, los enlaces adyacentes al grupo amino secundario son rotos preferentemente para producir 1,4-diamino butano (putrescina) o 1,3-diamino propano. En la plantas y los animales, los grupos amino primarios de ambas diaminas y poliaminas son oxidadas a aminooaldehídos. Así, la poliamina oxidada cataliza la ruptura de la espermidina a putrescina y 1, 3-amino propionaldehído, como también la ruptura de la espermina a espermidina y 3-amino propionaldehído (fig. 3). El catabolismo de putrescina se lleva a cabo en forma directa por desaminación oxidativa catalizada por la diamina oxidasa.

En el caso de los animales, el catabolismo de la
putrescina procede ya sea por desaminación oxidativa directa catalizada por la diamino oxidasa o por la conversión a N-mono-acetilputrescina catalizada por la acetil-CoA-1,4-diaminobutano-N-acetil transferasa. La N-mono-acetilputrescina es un substrato de la monoamina oxidasa mitochondrial (fig. 3).

FUNCION DE LAS POLIAMINAS EN LA SYNTE- SIS DE MACROMOLECULAS

A pH fisiológico, las poliaminas presentan carga neta positiva sobre los átomos de nitrógeno y de aquí que funcionen como cationes polivalentes. Numerosos estudios han demostrado que in vitro las poliaminas pueden interaccionar con los ácidos nucleicos y las estructuras que los contengan, tales como ribosomas y virus. La interacción involucra una neutralización de las cargas negativas de los grupos fosfato de los ácidos nucleicos estabilizando su estructura secundaria. Por lo tanto, los protege contra la desnaturización térmica, contra el daño por radiación y evita el intercalamiento de compuestos aromáticos.

También se ha publicado que las poliaminas afectan la actividad de RNA-polimerasa, DNA-polimerasa y ribonucleasa. En los sistemas bacterianos y de mamíferos las bajas concentraciones de poliaminas aumentan la actividad de RNA-polimerasa dependiente de DNA mientras que las altas la inhiben.

En las plantas, la espermidina incrementa la actividad de RNA polimerasa e inhibe la actividad y formación de RNASa.

Por otro lado, algunos pasos intermedios de la síntesis de proteínas in vitro son estimulados por poliaminas. Estas influyen en la longitud del polipéptido obtenido en un sistema de síntesis de proteínas libre de células. Es decir, en presencia de poliaminas, los polipéptidos sintetizados in vitro, como respuesta a diferentes mensajeros, son de cadena más larga y se asemejan más al producto sintetizado in vivo.

Las poliaminas también estimulan la formación del complejo ternario de iniciación in vitro, cuando se utiliza germen de trigo como fuente de los componentes.

Además, afectan la traducción, la transcripción y
la replicación modificando la conformación de los moldes y/o los productos, aumentando no sólo la velocidad de síntesis, sino también la fidelidad del proceso.

FUNCIONES CELULARES DE LAS POLIAMINAS

A. Proliferación celular y crecimiento.

La estimulación de la proliferación de células animales y vegetales in vivo o en cultivo se acompaña por un incremento en los niveles intracelulares de las poliaminas putrescina, espermidina y espermina, mientras que las células tumorales, contienen mayor concentración intracelular de poliaminas que sus contrapartes normales.

a) Animales

Como antes se mencionó, la síntesis de las poliaminas está regulada, en parte, por el nivel de la ornitina descarboxilasa, la enzima clave en esta vía, la cual tiene una muy alta velocidad de recambio y posee un inhibidor macromolecular llamado antizima. La actividad de la ornitina descarboxilasa es baja en las células en reposo y se incrementa alrededor de 100 veces como respuesta a estímulos de crecimiento por ejemplo heptectomía parcial, factor de crecimiento epidermal, isoproterenol, así como AMPc y sus derivados, o agentes que aumenten los niveles intracelulares de AMPc, este aumento en la actividad de la ornitina descarboxilasa va acompañado de un incremento en los niveles intracelulares de poliaminas. Por otro lado, también se ha demostrado que la actividad de la ornitina descarboxilasa está disminuida cuando las células in vivo o en cultivo se exponen a altos niveles de putrescina u otra poliamina, incluyendo α, ω- diaminas alifáticas sin téticas. El mecanismo de este efecto no es claro, pero ha sido demostrado que el tratamiento con estas aminas sintéticas, resulta en la aparición de antizima y en la disminución de los niveles de la ornitina descarboxilasa. La correlación existente entre proliferación celular y el aumento en los niveles de poliaminas endógenas ha sido bien establecida, sin embargo el papel molecular de estos compuestos in vivo no se ha definido. Con el desarrollo de inhibidores que interfieren específicamente en los diferentes pasos de la biosíntesis de las poliaminas (tabla I), ha sido delineado un enfoque para dilucidar la función fisiológica de poliaminas en eucariontes superiores.

Cuando un cultivo de fibroblastos de embrión de rata en la fase de crecimiento logarítmico se incuba con un inhibidor de la síntesis de espermidina y espermina, la metilgloxal-bis-(guanil-hidrazona) (MGBG), inhibidor de la S-adenosil-metionina descarboxilasa, las células continuán dividiéndose a velocidad normal durante un ciclo celular y luego se acumulan en la fase G1 del ciclo celular (periodo entre la mitosis y la síntesis de DNA). En esta fase se llevan a cabo una serie de eventos algunos de los cuales son esenciales para la iniciación de la replicación del (DNA). Esta inhibición de la proliferación celular en presencia de MGBG (30 μM), es precedida por una disminución en los niveles intracelulares de espermidina y espermina, sugiriendo que estas poliaminas pueden requerirse para una proliferación celular continua. Cuando las pozas de espermidina o espermina en células inhibidas con MGBG se aumentan nuevamente por adición de cualquiera de estas poliaminas, las células se dividen 12 hrs después de iniciado el tratamiento. De estas observaciones se puede concluir que la inhibición de la proliferación celular por MGBG resulta de su actividad.
como inhibidor de la síntesis de poliaminas y no de efectos tóxicos colaterales y que la espermidina y la espermina, al menos en este caso, tienen actividades químicas similares en la estimulación de la proliferación celular, mientras que la putrescina no puede sustituir el efecto de estas poliaminas.

Otros estudios similares al antes descrito se han realizado con diferentes tipos de células normales, concluyendo que las poliaminas constituyen un requerimiento necesario para la proliferación celular.

Por otro lado, el tratamiento con MGBG de células transformadas produce una disminución significativa de los niveles de poliaminas y una inhibición del crecimiento celular. Sin embargo, esto último es debido a la muerte celular como fue demostrado por autoradiografía y microfluorometría de flujo. En contraste a las células normales, las células transformadas no se acumulan en fase G1, en la presencia de MGBG, lo que sugiere que las células normales poseen un punto de control del crecimiento sensible a poliaminas y que en las células transformadas éste se ha perdido. El mayor contenido de poliaminas en las células cancerosas con respecto a las normales conduce a la excreción excesiva de estos metabolitos. Lo que resulta en un aumento de los niveles de estos compuestos en fluidos fisiológicos de pacientes que sufren diferentes tipos de neoplasias. Esta característica de tejidos neoplásicos está siendo utilizada en el diagnóstico clínico; y que la administración de un agente anticancerígeno efectivo disminuye la concentración de poliaminas en los líquidos corporales. La evidencia experimental sugiere que la elevación de poliaminas y sus enzimas biosintéticas en tejidos que crecen rápidamente es esencial para la proliferación celular y no una consecuencia; en la actualidad, se están realizando estudios que permitan en un futuro, el uso de compuestos inhibidores de síntesis de poliaminas como agentes anticancerígenos. De la gran variedad de inhibidores de síntesis de poliaminas mostrado en la tabla I, solo el MGBG ha sido probado a nivel clínico y se ha demostrado que esta droga es efectiva en una gran variedad de tumores experimentales. Se ha demostrado su mayor utilidad en el tratamiento de leucemia mielocítica y desórdenes linfomatosos. Además de estos efectos quimioterapéuticos, el MGBG tiene una gran variedad de efectos farmacológicos y toxicológicos, los cuales tienden a obscurecer las ventajas terapéuticas de la droga. Entre los efectos tóxicos que produce, están la inmunosupresión, depresión de la médula ósea, toxicidad gastrointestinal, hipoglucemia, cardiotoxicidad, nefrotoxicidad y hepatotoxicidad. Debido a la marcada actividad clínica que presenta el MGBG se han probado diferentes análogos estructurales, en un intento por identificar un agente activo que presente menor toxicidad. Sin embargo, hasta ahora no se ha encontrado ninguno con tales características.

b) Plantas

En el caso de las plantas, la evidencia experimental es aun muy escasa para dilucidar si el aumento tanto de los niveles de poliaminas como de la actividad de sus enzimas biosintéticas que acompañan a los fenómenos de división celular, son debidos a

<table>
<thead>
<tr>
<th>TABLA I INHIBIDORES DE SÍNTESIS DE POLIAMINAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENZIMA AFECTADA</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Ornitina descarboxilasa (ODC)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>S-adenosil metionina descarboxilasa (SAMDC)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Espermidina sintetasa</td>
</tr>
<tr>
<td>Espermina sintetasa</td>
</tr>
</tbody>
</table>
cambios casuales o causales. Sin embargo, todo parece indicar que en estos sistemas biológicos estos compuestos juegan un papel similar al que desempeñan en las células animales y bacterianas. Entre los datos experimentales que apoyan esta propuesta están los siguientes:

Las rebanadas de papa latente son inducidas a crecer, ya sea por la adicción exógena de auxinas o de poliaminas, además, este tejido muestra un rápido aumento en la síntesis de poliaminas después de la adición del fitorregulador. La germinación de tubérculos de papa y de semillas está acompañada por un brusco incremento en los niveles de poliaminas. La inducción por luz roja del crecimiento de yemas de plántulas etioladas de chicharó está acompañada por un incremento en la actividad de la arginina descarboxilasa y la acumulación de poliaminas. Se ha encontrado una correlación similar al estimular con ácido giberélico el crecimiento de plántulas enanas de chicharó.

B. Papel preventivo en el envejecimiento.

a) Animales

El mecanismo del envejecimiento en los tejidos animales se encuentra en proceso de definición. Sin embargo, se pueden puntualizar algunas características generales. Este conocimiento se ha obtenido de los estudios de las células humanas en cultivo en combinación con observaciones en los organismos vivos. En un organismo completo, el envejecimiento está influído por factores nutricionales y del medio ambiente y algunas de sus consecuencias son: disminución en la capacidad para metabolizar fármacos, alteración de la estabilidad del RNA-mensajero, cambios en los niveles hormonales, etc. mientras que en las células en cultivo se ha encontrado que el envejecimiento resulta de alteraciones en los procesos de síntesis y reparación del DNA, presentando mayor longevidad las especies que tienen una mayor capacidad para activar el proceso de reparación inducido por irradiación ultravioleta. En células del hígado y del riñón de la rata se ha demostrado que hay una disminución significativa en las concentraciones de espermíndina y espermína después de un mes de nacida. Esta disminución en los niveles de poliaminas a medida que las células envejecen, ha sido confirmada en muy diversos tipos celulares, incluyendo fibroblastos de humanos. En base a estos hallazgos, se puede proponer que existe una relación entre las poliaminas y el proceso de envejecimiento. Debido al efecto estabilizador de las poliaminas, especialmente la espermíndina y la espermína, sobre la síntesis de RNA y DNA, es interesante especular que la disminución en la síntesis de DNA, observada en células viejas tanto in vitro como in vivo puede, en parte, ser el resultado de la disminución en el contenido y síntesis de poliaminas ya demostrado. Otra posibilidad interesante es el papel de las poliaminas en la fidelidad de la traducción del RNA mensajero. Por estudios in vitro, se sabe que las poliaminas son necesarias para asegurar la fidelidad del proceso de la traducción, lo que sugiere que a medida que los niveles de poliaminas en las células disminuyen con la edad, hay una mayor oportunidad de pérdida de fidelidad en la traducción, lo cual puede resultar en la síntesis de proteínas anormales que se encuentran presentes en las células envejecidas.

b) Plantas

Las poliaminas son inhibidores potentes de la senescencia cuando son aplicadas a diversos tejidos vegetales, la putrescina, la espermíndina y la espermína exógenas, así como su precursor, la L-arginina, decrecen la velocidad de senescencia de protoplastos de la hoja de avena, estabilizándolos contra la lisis y aumentando la síntesis neta de proteínas y RNA. Este tratamiento también induce la síntesis de DNA y la actividad mitótica. Es más, el tratamiento de los segmentos de hoja aislada de diferentes especies de plantas, retardan la degradación de la clorofila y previenen el aumento de la actividad de RNAasa y de las proteasas que acompañan al fenómeno de senescencia. En hojas de avena, los niveles de putrescina, diaminopropano y agmatina son mayores en hojas jóvenes y declinan con la edad; del mismo modo que la actividad de arginina descarboxilasa decrece progresivamente en la primera hoja a medida que tiene más edad. Una tendencia similar se presenta en hojas aisladas envejecidas en la obscuridad.

Otro proceso metabólico que se encuentra alterado en tejidos de plantas senescentes, es la síntesis de etileno. Los tejidos vegetales senescentes producen mayor cantidad de etileno, que los tejidos jóvenes. La adición de poliaminas reduce la cantidad de etileno producida por los pétalos senescentes de Tradescantia. Dado que la actividad biosintética de las poliaminas es mayor y por ende, sus niveles en las células jóvenes en crecimiento y que además la aplicación exógena de las mismas retarda la aparición del síndrome de la senescencia, es de esperarse que las poliaminas jueguen un papel muy importante en la regulación del desarrollo de las plantas.

REFERENCIAS

* En plantas el fenómeno de envejecimiento se denomina senescencia.
Este año, del 11 al 16 de septiembre, se realizará el X TALLER DE ACTUALIZACIÓN BIOQUÍMICA en la Escuela de Medicina de la Universidad Autónoma de San Luis Potosí, evento que el Departamento de Bioquímica de la Facultad de Medicina de la U.N.A.M., ha venido organizando desde 1974 y que desde sus inicios se ha llevado a cabo para contribuir a cumplir con el compromiso que la Universidad Nacional Autónoma de México tiene con el resto de Instituciones de Enseñanza Superior del país.

En el Taller se revisan los puntos actuales de algunos de los tópicos en nuestro campo, discutidos por profesores e investigadores expertos en dichas áreas.

En el X TALLER DE ACTUALIZACIÓN BIOQUÍMICA participarán del Centro de Investigación y Estudios Avanzados del I.P.N., la doctora Martha Fernández, presentando datos sobre sus estudios en Liposomas, el doctor Enrique Hong quien hablará sobre las Bases Farmacológicas del tratamiento de la Ulceras Pépticas y el doctor Vicente López sobre el tema de Enzimas Inmovilizadas; del Hospital “20 de Noviembre”, la doctora Susana Ramírez hará una presentación relacionada con la Genética Humana; el M. en C. Luis Rogelio Hernández Montenegro, de la Facultad de Química de la Universidad Autónoma de Coahuila, presentará el tema de Bioquímica de la Memoria; del Instituto de Investigaciones Biomédicas de la U.N.A.M., el doctor Lourival D. Possani abordará el tema Cromatografía y Electroforesis, el doctor Antonio Velázquez disertará sobre sus trabajos en Genética Humana y el doctor Pablo Pérez Gavilán hablará sobre Bioquímica y Microbiología de la Leche; de la Facultad de Química de la U.N.A.M., la doctora Estela Sánchez de Jiménez con el tema de Síntesis de Proteínas en la Germinación de Cereales y la Q.F.B. Magdalena Oliva sobre las Prácticas de Laboratorio en la Ensenanza de la Bioquímica; el doctor Ricardo Tapia del Centro de Investigaciones en Fisiología Celular de la U.N.A.M., hablará de sus estudios en el campo de la Neuroquímica; el doctor Edmundo Calva M. del Centro de Investigación sobre fijación de Nitrógeno de la U.N.A.M., demostrará algunas técnicas de laboratorio empleadas en la Genética Molecular y de la Facultad de Medicina de la U.N.A.M., el doctor Mario Calcagno hablará sobre el Metabolismo de Aminoácidos y el licenciado Alejandro Mora sobre las posibilidades que las técnicas audiovisuales tienen en la enseñanza de nuestra disciplina.

Como siempre, este Taller está dirigido a los profesores de todas las carreras universitarias o de educación superior en donde la Bioquímica forma parte de sus currícula, esto es, Medicina, Ciencias Químicas, Biología, Odontología, Veterinaria, Agronomía, Enfermería y disciplinas afines.

En ocasión del décimo aniversario, el Taller de Actualización Bioquímica toma unas características muy especiales porque la Facultad de Medicina de la U.N.A.M., celebra 150 años de su fundación, inicialmente como Establecimiento de Ciencias Médicas, y dentro de sus actividades abre una sesión de carteles con el objeto que todos aquellos profesores que estén interesados en dar a conocer sus logros en investigación docente lo hagan y para ello deberán enviar inicialmente un resumen al Departamento de Bioquímica, Facultad de Medicina, U.N.A.M., al apdo. postal 70-159, 04510, México, D. F., antes del 31 de mayo del presente año. Dichos resúmenes quedarán incluidos en la sección correspon-
diente del Vol. VI de Mensaje Bioquímico. Se recibirán en una página, a máquina, de preferencia eléctrica, en un recuadro de 21.5 x 16 cm. El encabezado deberá tener: título del trabajo a mayúscula, autores e institución donde laboran. Dejar un doble espacio para iniciar su resumen.

Como en ocasiones anteriores la inscripción se deberá enviar a nuestra dirección junto con un cheque o giro postal. Para facilitar el cobro del último documento éste deberá hacerse efectivo en la administración postal número 70. La cuota de inscripción es de $1,000.00 M.N. si ésta se efectúa antes del día 30 de junio, o de $1,500.00 M.N. si es posterior a esta fecha; suplicándole se encargue usted de sus reservaciones hoteleras.

Queremos recordarle que este evento nos da oportunidad de convivencia e intercambio de experiencias entre los profesores de Bioquímica.

Deseamos que participe en esta actividad y en caso de que necesite mayores informes acerca de la reunión, comuníquese al teléfono 548-39-57 en la Ciudad de México y en la Ciudad de San Luis Potosí al número 3-04-99 con los doctores Jesús Manuel Rodríguez o Martha Celia Ramos de González.

Yolanda Saldaña de Delgadillo
Depto. de Bioquímica Facultad de Medicina, U.N.A.M.

--- PRIMER ANIVERSARIO DEL B.E.B. ---

El Boletín de Educación Bioquímica, B.E.B., ha cumplido su primer año de vida y todos deseamos que sea larga y fructífera. Felicitémonos los que formamos la comunidad bioquímica mexicana, porque este Boletín, que trata de ser un lazo de unión y comunicación entre estudiantes y profesores de Bioquímica del país, ha resistido la gran aventura de su primer año.

La acogida favorable por parte de la comunidad bioquímica, así como de los estudiantes del área biológica, es el mejor premio para el B.E.B. y para los que creen que vale la pena de hacer un esfuerzo en mantenerlo vivo, hacerlo crecer y mejorarlo hasta donde sea posible.

Gracias a todos los que de alguna forma han colaborado hasta ahora en el B.E.B. y que han hecho posible su existencia durante esta primera etapa.

La tarea de sacar el B.E.B. es un desafío no del futuro sino de cada número, y que planear y organizar cada uno es un esfuerzo sostenido. Es importante para su existencia en este segundo año de vida que algunos miembros de la comunidad bioquímica le dediquen unas horas de su tiempo.

Es alentador saber que 1500 personas reciben el B.E.B., ésto demuestra que cumple con su objetivo primordial de servicio y lazo de unión entre los que sienten a la Bioquímica como una pasión común.

El número de corresponsables de la extensa provincia mexicana es ya de nueve y uno de un país hermano de América, Colombia. Hay pues interés y necesidad de comunicarse.

Incluso hay quien cree tanto en la función del B.E.B. que envió los tres primeros números ya aparecidos al profesor F. Vella, Director del Committee on Education of the International Union of Biochemistry, quien en respuesta envió una amable carta y la copia de una breve nota que él mismo envió para su publicación en la revista Biochemical Education, cuyo inicio y final me permito transcribir:

"B.E.B. es a new quarterly journal in Spanish intended for the updating of biochemistry instructors in tertiary level education institutions in Mexico.

It is published by the Department of Biochemistry of the Faculty of Medicine of the National Autonomous University of Mexico (UNAM). The need for it appears to have been vocalised at several refresher courses in Biochemistry held annually by that department...

...I was impressed by the aims of and the effort behind B.E.B. The articles are well written, up-to-date (many of the references were to publications in 1981), and well illustrated. Self-help is a very praiseworthy activity since it recognises that local problems have to be solved locally, in local appropriate ways.

If this example were to be emulated, especially in various parts of the Third World, it would be a great step forward in the difficult task of updating biochemistry teachers who for a variety of reasons find themselves isolated.

To all concerned with producing B.E.B., a hearty "well done" and the best of wishes for the future".

En mi opinión las últimas palabras dicen lo que muchos en la comunidad bioquímica hemos sentido al ver los números del B.E.B.; se ha hecho algo correcto y puede ser mejorado en cada número.

El B.E.B., servicio y vehículo de comunicación entre los bioquímicos ha cumplido un año. ¡Felicidades a todos los que colaboran, lo reciben con agrado, lo leen, lo divulgán y a los que creen que vale la pena seguir en esta tarea!

José Antonio Holguín Hueso
Instituto Nacional de Cardiología
“Dr. Ignacio Chávez”

--- SOLIDARIDAD ANTE LA CRISIS ---

Ante los cambios políticos y económicos que ha sufrido nuestro país, como reflejo de un desorden
financiero mundial, se ha notado un recorte severo de los presupuestos destinados a proyectos de investigación. Esto repercute en forma muy importante en aquellos investigadores que dependen en forma exclusiva de los recursos proporcionados por el estado, a través de una institución de enseñanza superior o del Consejo Nacional de Ciencia y Tecnología.

La disminución en el gasto público, aunado a la dependencia tecnológica hará más difícil la realización de los programas de investigación original sobre todo en aquellas áreas que no se consideren prioritarias. Es por esto que la comunidad científica debe responder en forma unitaria y responsable proponiendo y estableciendo estrategias que impidan el debilitamiento o deterioro de las labores de investigación.

Una actividad que se debe de fomentar es la creación de proyectos multidisciplinarios que permitan la colaboración de científicos con experiencia en áreas complementarias, favoreciéndose así la investigación de grupos de trabajo intra e interinstitucionales. Esta actitud conlleva la ventaja de intercambiar ideas y habilidades, así como el de compartir equipo y reactivos que en la mayoría de las veces se encuentran subutilizados en algunos centros de trabajo. El obtener el máximo rendimiento del equipo e instrumental costoso es una necesidad que debe de hacerse manifieta en situaciones como la presente. En estas condiciones es cuando el científico tiene que emplear su principal cualidad, la creatividad, para proponer proyectos específicos o líneas de investigación que pueden obtener financiamiento de organizaciones o fundaciones no gubernamentales nacionales y extranjeras.

A continuación aparece una lista de agencias y fundaciones que ofrece financiamiento en áreas específicas de investigación, que en algún caso pueden ser de ayuda.

1. Program for applied research on fertility regulation (PARFR) North-Western University.
 1040 Pasavant Pavilion
 303 East Superior Street
 Chicago, Illinois 60611 U.S.A.
 Attn to: Diane H. Krier M.B.A.
 Director of Administration

2. International Fertility Research Program
 Research Triangle Park, North Carolina 27709 U.S.A.
 Attn to: David A. Edelman Ph. D.
 Associate Director for Research

3. The Kroc Foundation
 P.O. Box 547
 Santa Inez, C.A. 93460, U.S.A.
 Attn: Walter Garey
 Director, Grants Program

4. The Population Council
 Apartado Postal 105-152
 México 5, D.F.

5. The Ford Foundation
 Alejandro Dumas 42, México 5, D.F.

6. International Development Center
 Box 8500
 Otawa, Canada K16 3HG
 Attn: Lourdes Flor
 Subdirectora: División de Ciencias de la Salud

7. Joint FAO/IAEA División of isotope and radiacion applications of atomic energy for food and agricultural development
 Magramestrasse 5, P.O. Box 100 A-1400
 Vienna, Austria.
 Attn: James D. Dargie
 Animal Production and Health Section

Vicente Díaz Sánchez
Dep. de Bioquímica Facultad de Medicina,
UNAM y Dep. de Biología de la Reproducción I.N.N.
TABLA I Costo relativo de la proteína de diversas fuentes
(Datos extraídos de Abbott, 1976)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Contenido de proteína (%)</th>
<th>Precio relativo de la proteína $U.S. (centavos/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harina de granos</td>
<td>11</td>
<td>38</td>
</tr>
<tr>
<td>Polvo de leche</td>
<td>36</td>
<td>136</td>
</tr>
<tr>
<td>Gallina</td>
<td>19</td>
<td>375</td>
</tr>
<tr>
<td>Bovino</td>
<td>15</td>
<td>450</td>
</tr>
<tr>
<td>Queso</td>
<td>25</td>
<td>494</td>
</tr>
<tr>
<td>Pescado seco</td>
<td>37</td>
<td>629</td>
</tr>
<tr>
<td>Ovino</td>
<td>11</td>
<td>825</td>
</tr>
<tr>
<td>Harina de soya</td>
<td>50</td>
<td>53</td>
</tr>
<tr>
<td>Microorganismos</td>
<td>66</td>
<td>51</td>
</tr>
</tbody>
</table>

ponentes que dificultan la digestión, son tóxicos, actúan como antimetabolitos o simplemente hacen el producto organolepticamente indeseable.

Se han descrito diversos métodos para extraer proteínas de hojas e incluso se han descrito procedimientos industriales utilizando alfalfa (Medicago sativa), trébol y otras especies.

Se estudiaron los siguientes factores en el método de extracción ácido-base: tipo de molienda, pH, temperatura, tiempo de extracción y razón soluto/solvente. Las condiciones óptimas en la gobernadora son: pH 12, temperatura de extracción: 50°C, tiempo: 30 minutos y razón de soluto/solvente (metanol): 1/5. Se utilizan hojas desenredadas, que serían un subproducto de la utilización de la planta con otros fines. La eficiencia real de la extracción fue 67.54 por ciento y el contenido protético en el extracto es 22.9 por ciento.

En el guayule previamente tratado para extraer el hule en la planta piloto de Saltillo, las condiciones óptimas de extracción se obtuvieron usando molino de cuchillas a pH 12, tiempo de extracción: 20 minutos; temperatura: 50°C y razón soluto/solvente: 1/10. La eficiencia es baja por el tratamiento previo de la planta, llegando solamente a 27.29 por ciento, pero el contenido protético en el extracto es de 30.76 por ciento.

Se proyecta estudiar en 1983 la digestibilidad de los extractos y por otra parte estudiar la extracción de proteínas a partir de semillas de la uva y del melón que actualmente son subutilizadas.

Luis Rogelio Hernández Montenegro
Escuela de Ciencias Químicas
Universidad Autónoma de Coahuila

CURSOS DE POSGRADO
LA FACULTAD DE QUÍMICA DE LA UNIVERSIDAD DE GUANAJUATO A TRAVÉS DEL INSTITUTO DE INVESTIGACIÓN EN BIOLOGÍA EXPERIMENTAL, OFRECE CURSOS PARA OBTENER LOS GRADOS ACADÉMICOS DE MAESTRÍA Y DOCTORADO EN CIENCIAS EN EL ÁREA DE LA BIOLOGÍA EXPERIMENTAL.

OBJETIVOS
1).— Promover la descentralización de la enseñanza a nivel de posgrado en el país.

2).— Preparar profesores en la especialidad para desarrollar labores de docencia a nivel de licenciatura y de posgrado.
3).— Formar investigadores científicos y tecnológicos para fomentar el desarrollo de la investigación biológica.
4).— Iniciar la infraestructura que sirva de base para la creación de disciplinas conexas.

INFORMACION GENERAL

La Maestría y el Doctorado en Ciencias, del área de Biología Experimental, contempla las siguientes opciones: Bioquímica, Microbiología, Genética y Biología Molecular. Todas las especialidades están sujetas a un mismo programa de cursos y solamente se determinará la especialidad, dependiendo del trabajo experimental de tesis.

La duración de los estudios de posgrado es de 2 años como mínimo. La Maestría en Ciencias está dividida en trimestres. Los primeros cuatro trimestres contemplan los cursos básicos para la preparación fundamental de los estudiantes en el campo de la biología moderna y los trimestres restantes, involucran el desarrollo del trabajo experimental de tesis en los laboratorios del Instituto.

El Doctorado en Ciencias tiene un sistema semestral y su mayor actividad está enfocada al desarrollo del proyecto de investigación.

REQUISITOS DE ADMISION. MAESTRIA

1.— Título profesional en el área de la biología o estudios equivalentes a juicio del Consejo de Profesores o carta de pasante.
2.— Aprobar los exámenes de conocimientos de las siguientes materias: Matemáticas, Físicoquímica, Química, Bioquímica y Microbiología. Los exámenes podrán presentarse en la primera semana de septiembre o la primera semana de diciembre.
3.— Solicitud de admisión a lo que deberá anexarse lo siguiente:
 Certificado de estudios profesionales.
 Dos cartas de recomendación.
 Curriculum vitae.
 Cuatro fotografías (2 1/2 x 3).
 Copia del título profesional o carta de pasante.

DOCTORADO

1.— Solicitud de admisión. A la solicitud de admisión deberá anexarse:
 Copia del título o diploma de estudios de la Maestría en Ciencias.
 Certificado de estudios de la Maestría en Ciencias.
 Curriculum vitae (anexar copias de los trabajos publicados).
 Acta de nacimiento.
 Cuatro fotografías (2 1/2 x 3).
2.— Presentar y aprobar el examen de admisión. Este consistirá en una entrevista con la Comisión de Admisión la cual analizará cuidadosamente: el curriculum del interesado, las calificaciones obtenidas durante los estudios de la Maestría en Ciencias y la calidad del trabajo experimental desarrollado para obtener grado de maestría.
3.— Demostrar la capacidad de traducir el idioma inglés.

FECHA LIMITE PARA ENTREGA DE DOCUMENTOS:

MAESTRIA: 3a. semana de agosto
DOCTORADO: 1a. semana de enero y 1a. semana de julio.

Estos documentos deberán ser entregados al Dr. Arturo Flores Carreón, Coordinador de la Maestría en Biología Experimental, Facultad de Química, Noria Alta s/n, Guanajuato, Gto. Teléfonos: 2-20-34, 2-43-02, 2-49-96.

PROGRAMA DE CURSOS. MAESTRIA

I TRIMESTRE II TRIMESTRE
Matemáticas I. Matemáticas II.
Físicoquímica I. Físicoquímica II.
Biología Celular. Metabolismo Intermedio.
Seminario. Instrumentación en Bioquímica.
 Seminario.

III TRIMESTRE IV TRIMESTRE
Matemáticas III. Fisiología Celular.
Biología Molecular. Temas Selectos de Biología.
Seminario. Didáctica.
 Seminario.

V A VIII TRIMESTRE DOCTORADO
Trabajo de tesis. I SEMESTRE
Seminario de investigación. Temas selectos de Bioquímica.
Seminario bibliográfico.

II SEMESTRE
Temas selectos de Biología.
Experimental.
Seminario de investigación.
Trabajo de tesis.
III SEMESTRE
Temas selectos de Genética.
Seminario de investigación.
Trabajo de tesis.

IV SEMESTRE
Temas selectos de Microbiología.
Seminario de investigación.
Trabajo de tesis.

INICIACION DE CURSOS:
MAESTRIA: 1a. semana de enero
DOCTORADO: 1a. semana de enero o 1a. semana de julio.

EN LA LEpra TUBERCULOIDE Y EN LA LEpra LEPROMATOSA, HAY PREDOMINIO DE LINFOCitos T “COOPERADORES” Y “SUPRESORES” RESPECTIVAMENTE.

La lepra es una enfermedad bacilar crónica que infecta aproximadamente once millones de personas en el mundo. La respuesta del hombre a la lepra cubre un amplio espectro. En la lepra lepromatosa hay infiltrados diseminados con *Mycobacterium leprae* que se multiplica extensamente en los macrófagos de la piel. En contraste, las lesiones en la forma tuberculoido de la enfermedad, ocupan menor superficie de la piel y el análisis histológico demuestra que consisten de granulomas ricos en linfocitos, organizados y con pocos microorganismos viables. Son comunes las formas intermedias y su clasificación depende de los hallazgos clínicos e histológicos.

En esta publicación se demuestran con frecuencia las características de las células en las lesiones cutáneas y en la sangre de 21 paciente lepromatoso. En las lesiones lepromatosa, una gran porción de los infiltrados consisten de macrófagos densamente parasitados con *Mycobacterium leprae*. Los linfocitos T en las lesiones casi exclusivamente linfocitos “supresores” (positivos a los anticuerpos monoclonales OKT8/Leu 2a.) y están desprovistos de linfocitos T “cooperadores” (positivos a los anticuerpos monoclonales OKT4/Leu 3a). En contraste, los infiltrados tuberculoides contienen granulomas epitelioideos bien organizados con células gigantes, así como restos de bacilos. Las células T predominantes corresponen a la subpoblación positiva a los anticuerpos monoclonales OKT4/Leu 3a (linfocitos T cooperadores). Tanto en los infiltrados tuberculoido como lepromatoso, los linfocitos T y los macrófagos expresaron el antígeno HLA-DR. No se observó alteración marcada en la distribución de los fenotipos de los linfocitos T de la sangre periférica.

Esta marcada diferencia entre las subpoblaciones de células T en los infiltrados de las lepas tuberculoides y lepromatosa, puede influir en la actividad microbicida de los macrófagos en las lesiones.

Guillermo Carvajal S.
Escuela Nacional de Ciencias Biológicas
Instituto Politécnico Nacional.

HIPOGLICEMIA ASOCIADA CON ANTICUERPOS PARA EL RECEPTOR DE LA INSULINA.

La hipoglicemia en ayunas frecuentemente presenta dificultades para el diagnóstico diferencial, debido a la multiplicidad de causas posibles. Puesto que puede ser difícil diagnosticar el insulinoma inequívocamente, es importante descartar diagnósticos alternativos antes de someter al enfermo a cirugía pancreática.

Aquí se estudió una paciente con hipoglicemia en ayunas persistente aún después de la pancreatectomía subtotal. Finalmente se determinó que la hipoglicemia fue consecuencia del efecto insulinomimético de los autoanticuerpos dirigidos contra el receptor de la insulina. El tratamiento con prednisona (110 mg/día) produjo una elevación de la glucosa en ayunas a más de 100 mg por decilitro (6 mmol/l.) en 48 hrs aunque no hubo cambio detectable en el título de los anticuerpos antirreceptor. Después de diez semanas de tratamiento, el título de anticuerpos descendió cerca de cien veces y fue posible descontinuar la administración de la prednisona sin recurrencia de la hipoglicemia.

Guillermo Carvajal S.
Escuela Nacional de Ciencias Biológicas
Instituto Politécnico Nacional.
ANATOMIA DE UN GENE DEL CANCER HUMANO.

En estos dos artículos de los grupos encabezados por los doctores Robert A. Weinberg del Inst. Tecnol. de Massachusetts y Barbacid del Inst. Nac. del Cáncer, se demuestra que en las células derivadas de un carcinoma de vejiga hay un gene que difiere del natural, en la sustitución de un nucleótido por otro (G→T). La consecuencia es que la proteína cuyo ensamblamiento está gobernado por el gene, difiere de la proteína normal en el décimo-
segundo aminoácido (empezando por el extremo con el grupo amino terminal): la glicina está substituida por la valina. A esta proteína se le conoce como p21 (P.M. 21,000) parece ser una enzima que está unida a la superficie interna de la membrana plasmática. Barbacid y sus colegas han usado técnicas de computadora para demostrar que este simple cambio de una glicina por una valina podría tener el efecto de endurecer el extremo de la molécula, cambiando quizás profundamente sus propiedades catalíticas. Ahora se espera que pueda saberse en un futuro cercano, la función normal de esta enzima (p21) y de cómo puede influir sobre otras proteínas celulares.

Guillermo Carvajal S.
Escuela Nacional de Ciencias Biológicas
Instituto Politécnico Nacional.

LA NEUROPATIA DIABETICA Y SU POSIBLE RELACION CON LA GLICOSILACION NO-ENZIMATICA DE LA TUBULINA.

El papel de los microtúbulos en la actividad y funciones celulares es variado y oscila desde la participación de la tubulina y los microtúbulos en la neurosecreción celular y el transporte axonal, hasta el mantenimiento de la morfología celular mediante la interacción de los microtúbulos con otros elementos de la membrana y del citoesqueleto. La modificación covalente de la tubulina podría tener una gran variedad de manifestaciones funcionales que explicarían la neuropatía en el diabético. Así, la función tubulina-microtúbulo alterada, el acortamiento axonal, el flujo axonal disminuido, la latencia aumentada y las velocidades de conducción disminuidas; todas distintivas de la neuropatía diabética, podrían involucrar anormalidades de la formación de los microtúbulos o interacción alterada de la tubulina con otros componentes del citoesqueleto.

Estos estudios demuestran que la glucosa y la glucosa —6— fosfato glicosilan en forma no-enzimática in vitro a la tubulina y a las proteínas asociadas a ésta, en una forma que depende del tiempo y de la concentración de los carbohidratos. Esta glicosilación no-enzimática resulta en la formación de agregados de alto peso molecular aquí demostrados por microscopía electrónica, por su velocidad de sedimentación y por su incapacidad para penetrar en geles de poliacrilamida en presencia de dodecil sulfato de sodio y de ditiotretol. La cantidad de azúcares reducibles con horohidroso de sodio tritiado, covalentemente unidos, en la tubulina obtenida del cerebro de ratas diabéticas o con estreptozotocina, aumentó espectacularmente, comparada con la tubulina obtenida del cerebro de ratas normales.

Guillermo Carvajal S.
Escuela Nacional de Ciencias Biológicas
Instituto Politécnico Nacional.
ARTICLES

36 MIGRATION BETWEEN THE COVE AND THE PERIPHERY, by Richard C. Mosley, Jr. The flow of population from rural to urban areas is still a matter of concern.

36 RADAR IMAGES OF THE EARTH FROM SPACE, by Charles U. Bassen. Scanning the ground with microwaves from satellites yields new kinds of pictorial information.

84 THE DEVELOPMENT OF MAPS AND STIPES IN THE BRAIN, by Marc A. Zervas. The evidence from animals and frogs suggests how the brain is organized.

88 PERSONAL COMPUTERS, by Ho-onin D. Toggi and Amar Gupta. Presenting a unified account of their hardware, software, and applications in a current context.

100 SAMPLES OF THE MILKY WAY, by Richard A. Mewaldt, Edward C. Stone, and Mark E. Wiedenbeck. Cosmic rays are clues to the isotopic composition of other parts of the galaxy.

110 THE INTERACTION OF MOVING WATER AND SESSILE ORGANISMS, by M. A. R. Koehl. Shallow-water organisms show some remarkable adaptations to currents.

122 THE SEARCH FOR PRIME NUMBERS, by Carl Pomerance. Such searches, which are not without practical importance, can now be conducted at high speed.

132 THE LAMPS OF COSA, by Cleo Rickman Fitch. The evolution of the oil lamps of a Roman town over seven centuries reflects its changing culture.

ARTICLES

24 THE LARGE-SCALE COMPOSITION OF MAMMALIAN CELLS, by Joseph Feder and William R. Tolbert. It is needed for the industrial production of clinically important proteins.

32 MACHINES THAT WALK, by Marc H. Raibert and Ivan E. Sutherland. Control technology makes it possible to build machines that can move like animals with legs.

42 THE HAIR CELLS OF THE INNER EAR, by A. J. Hudspeth. These biological transducers convert tiny mechanical forces into electrical signals to the brain.

64 THE FOOTPRINTS OF EXTINCT ANIMALS, by David J. Mossman and William A. S. Sarjeant. Most species of extinct land vertebrates are known not from bones but from tracks.

76 NMR SPECTROSCOPY OF LIVING CELLS, by R. G. Shulman. Nuclear magnetic resonance (NMR) makes it possible to follow metabolism while it is in progress.

84 THE PHYSICS OF ORGAN PIPES, by Neville H. Fletcher and Susanne Thwaites. The column of air resonating inside the pipe interacts with a jet blowing across the pipe's mouth.

94 THE ORIGIN OF THE COSMIC X-RAY BACKGROUND, by Bruce Margon. The diffuse glow of X-radiation that fills the universe may come from a multitude of quasars.

106 THE MASS PRODUCTION OF IRON CASTINGS IN ANCIENT CHINA, by Hsu Jue-ming. By 500 B.C. it was done by stack casting, in which iron is poured into multiple molds.
INSTRUCCIONES PARA LOS
COLABORADORES DEL BOLETIN
DE EDUCACION BIOQUIMICA

Con el deseo de que el Boletín de Educación Bioquímica (BEB), sea de la máxima utilidad para los profesores y estudiantes del área biológica, serán bienvenidas las contribuciones en forma de artículos de revisión y noticias. Recomendamos a los autores se ajusten a los siguientes lineamientos para facilitar la labor editorial.

I. ARTICULOS DE REVISION

1) El BEB es una revista dedicada a la divulgación de temas interesantes y relevantes en el campo de la bioquímica y áreas afines.

2) Está dirigida a profesores y estudiantes no especializados, por lo que se sugiere que la presentación de los artículos y noticias sea lo más simple, explícito y didáctico posible. La limitación en el número de figuras, tablas y referencias obliga a los autores a que selecciones aquellas realmente importantes e informativas.

3) El manuscrito no debe exceder de 12 cuartillas escritas en máquina a doble espacio (27 renglones por cuartilla y 70 golpes por renglón).

4) Se aceptarán como máximo 6 figuras o tablas. Seleccione aquellas que sean lo más simple y explicativas posible. Numere las figuras con números arábigos y las tablas con números romanos. Adicione las leyendas y pies de figuras en una hoja aparte. Como las figuras y tablas serán reducidas de tamaño, aproximadamente al tamaño de 1/2 ó 1/4 de la hoja carta, las letras o números más pequeños, no deben ser menores a los 2 mm.

5) Sugerimos un máximo de 10 referencias, tanto específicas como lecturas recomendadas. Cada referencia debe contener: nombre(s) del autor(es), año entre paréntesis, título del artículo, nombre de la revista, volumen subrayado y el número de la primera y última página.

6) Evite hasta donde sea posible los pies de páginas. Excepto en el caso en que se enliste las abreviaturas utilizadas en el texto; éstas deberán agruparse en la primera página.

II. NOTICIAS

1) El tema de las otras comunicaciones puede ser muy variado; desde resúmenes de artículos interesantes, relevantes o significativos, información de tipo general, bolsa de trabajo, etc.

2) El contenido deberá ser desarrollado en forma resumida y de una manera muy explícita.

3) El manuscrito debe ser de una a cuatro cuartillas de longitud, escritas en máquina a doble espacio (27 renglones por cuartilla y 70 golpes por línea).

4) Se aceptarán un máximo de dos referencias incluidas entre paréntesis en el texto. En casos en que se juzgue necesario se podrá incluir una figura o tabla.

III. PROCESAMIENTO DEL MANUSCRITO

1) Los manuscritos serán leídos por dos revisores, uno de ellos familiarizado con el tema y el otro ajeno al mismo. Las correcciones y sugerencias se comunicarán al primer autor del manuscrito.

2) El comité se encargará de la corrección de las gafelas.

3) Si es necesario, las erratas serán publicadas a solicitud de los autores.

IV. Envíe el original y dos copias de los manuscritos a la Dra. Yolanda Saldaña de Delgadillo, Depto. de Bioquímica, Facultad de Medicina, Apdo. Postal 70-159, Delegación Coyoaocán 04510 México, D.F., o al Dr. Alberto Hamabata, Depto. de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740, 07000 México, D.F., o bien a través del corresponsal BEB.